§ 63.167 - (b) Each closed-purge, closed-loop, or closed-vent system as required in paragraph (a) of this section shall: - (1) Return the purged process fluid directly to the process line; or - (2) Collect and recycle the purged process fluid to a process; or - (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of §63.172 of this subpart; or - (4) Collect, store, and transport the purged process fluid to a system or facility identified in paragraph (b)(4)(i), (ii), or (iii) of this section. - (i) A waste management unit as defined in §63.111 of subpart G of this part, if the waste management unit is subject to, and operated in compliance with the provisions of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does not contain any organic HAP listed in Table 9 of subpart G of part 63, the waste management unit need not be subject to, and operated in compliance with the requirements of 40 CFR part 63, subpart G applicable to group 1 wastewater streams provided the facility has an NPDES permit or sends the wastewater to an NPDES permitted fa- - (ii) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266; or - (iii) A facility permitted, licensed, or registered by a State to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261. - (c) *In-situ* sampling systems and sampling systems without purges are exempt from the requirements of paragraphs (a) and (b) of this section. [59 FR 19568, Apr. 22, 1994, as amended at 61 FR 31439, June 20, 1996] ## §63.167 Standards: Open-ended valves or lines. - (a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve, except as provided in §63.162(b) of this subpart and paragraphs (d) and (e) of this section. - (2) The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requir- - ing process fluid flow through the open-ended valve or line, or during maintenance or repair. - (b) Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed. - (c) When a double block and bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) of this section at all other times. - (d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b) and (c) of this section. - (e) Open-ended valves or lines containing materials which would autocatalytically polymerize or, would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraph (a) through (c) of this section. [59 FR 19568, Apr. 22, 1994, as amended at 61 FR 31440, June 20, 1996] # § 63.168 Standards: Valves in gas/vapor service and in light liquid service. - (a) The provisions of this section apply to valves that are either in gas service or in light liquid service. - (1) The provisions are to be implemented on the dates set forth in the specific subpart in 40 CFR part 63 that references this subpart as specified in paragraph (a)(1)(i), (a)(1)(ii), or (a)(1)(iii) of this section. - (i) For each group of existing process units at existing sources subject to the provisions of subpart F or I of this part, the phases of the standard are: - (A) Phase I, beginning on the compliance date; - (B) Phase II, beginning no later than 1 year after the compliance date; and - (C) Phase III, beginning no later than $2\frac{1}{2}$ years after the compliance date. - (ii) For new sources subject to the provisions of subpart F or I of this part, the applicable phases of the standard are: - (A) After initial start-up, comply with the Phase II requirements; and - (B) Beginning no later than 1 year after initial start-up, comply with the Phase III requirements. - (iii) Sources subject to other subparts in 40 CFR part 63 that reference this subpart shall comply on the dates specified in the applicable subpart. - (2) The owner or operator of a source subject to this subpart may elect to meet the requirements of a later phase during the time period specified for an earlier phase. - (3) The use of monitoring data generated before April 22, 1994 to qualify for less frequent monitoring is governed by the provisions of §63.180(b)(6) of this subpart. - (b) The owner or operator of a source subject to this subpart shall monitor all valves, except as provided in §63.162(b) of this subpart and paragraphs (h) and (i) of this section, at the intervals specified in paragraphs (c) and (d) of this section and shall comply with all other provisions of this section, except as provided in §63.171, 63.177, 63.178, and 63.179 of this subpart. - (1) The valves shall be monitored to detect leaks by the method specified in §63.180(b) of this subpart. - (2) The instrument reading that defines a leak in each phase of the standard is: - (i) For Phase I, an instrument reading of 10,000 parts per million or greater. - (ii) For Phase II, an instrument reading of 500 parts per million or greater. - $\left(iii\right)$ For Phase III, an instrument reading of 500 parts per million or greater. - (c) In Phases I and II, each valve shall be monitored quarterly. - (d) In Phase III, the owner or operator shall monitor valves for leaks at the intervals specified below: - (1) At process units with 2 percent or greater leaking valves, calculated according to paragraph (e) of this section, the owner or operator shall either: - (i) Monitor each valve once per month: or - (ii) Within the first year after the onset of Phase III, implement a quality improvement program for valves that complies with the requirements of §63.175 (d) or (e) of this subpart and monitor quarterly. - (2) At process units with less than 2 percent leaking valves, the owner or operator shall monitor each valve once each quarter, except as provided in paragraphs (d)(3) and (d)(4) of this section. - (3) At process units with less than 1 percent leaking valves, the owner or operator may elect to monitor each valve once every 2 quarters. - (4) At process units with less than 0.5 percent leaking valves, the owner or operator may elect to monitor each valve once every 4 quarters. - (e)(1) Percent leaking valves at a process unit shall be determined by the following equation: $\%V_L = (V_L/(V_T + V_C)) \times 100$ where $\rm \%V_L=$ Percent leaking valves as determined through periodic monitoring required in paragraphs (b) through (d) of this section. V_L =Number of valves found leaking excluding nonrepairables as provided in paragraph (e)(3)(i) of this section. V_T =Total valves monitored, in a monitoring period excluding valves monitored as required by (f)(3) of this section. - $V_{\rm C}$ =Optional credit for removed valves=0.67 × net number (i.e., total removed-total added) of valves in organic HAP service removed from process unit after the date set forth in §63.100(k) of subpart F for existing process units, and after the date of initial start-up for new sources. If credits are not taken, then $V_{\rm C}$ =0. - (2) For use in determining monitoring frequency, as specified in paragraph (d) of this section, the percent leaking valves shall be calculated as a rolling average of two consecutive monitoring periods for monthly, quarterly, or semiannual monitoring programs; and as an average of any three out of four consecutive monitoring periods for annual monitoring programs. - (3)(i) Nonrepairable valves shall be included in the calculation of percent leaking valves the first time the valve is identified as leaking and nonrepairable and as required to comply with paragraph (e)(3)(ii) of this section. Otherwise, a number of nonrepairable valves (identified and included in the percent leaking calculation in a previous period) up to a maximum of 1 percent of the total number of valves #### § 63.168 in organic HAP service at a process unit may be excluded from calculation of percent leaking valves for subsequent monitoring periods. - (ii) If the number of nonrepairable valves exceeds 1 percent of the total number of valves in organic HAP service at a process unit, the number of nonrepairable valves exceeding 1 percent of the total number of valves in organic HAP service shall be included in the calculation of percent leaking valves. - (f)(1) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in §63.171 of this subpart. - (2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected. - (3) When a leak has been repaired, the valve shall be monitored at least once within the first 3 months after its repair. - (i) The monitoring shall be conducted as specified in §63.180 (b) and (c), as appropriate, to determine whether the valve has resumed leaking. - (ii) Periodic monitoring required by paragraphs (b) through (d) of this section may be used to satisfy the requirements of this paragraph (f)(3), if the timing of the monitoring period coincides with the time specified in this paragraph (f)(3). Alternatively, other monitoring may be performed to satisfy the requirements of this paragraph (f)(3), regardless of whether the timing of the monitoring period for periodic monitoring coincides with the time specified in this paragraph (f)(3). - (iii) If a leak is detected by monitoring that is conducted pursuant to paragraph (f)(3) of this section, the owner or operator shall follow the provisions of paragraphs (f)(3)(iii)(A) and (f)(3)(iii)(B) of this section, to determine whether that valve must be counted as a leaking valve for purposes of §63.168(e) of this subpart. - (A) If the owner or operator elected to use periodic monitoring required by paragraphs (b) through (d) of this section to satisfy the requirements of paragraph (f)(3) of this section, then the valve shall be counted as a leaking valve - (B) If the owner or operator elected to use other monitoring, prior to the periodic monitoring required by paragraphs (b) through (d) of this section, to satisfy the requirements of paragraph (f)(3) of this section, then the valve shall be counted as a leaking valve unless it is repaired and shown by periodic monitoring not to be leaking. - (g) First attempts at repair include, but are not limited to, the following practices where practicable: - (1) Tightening of bonnet bolts, - (2) Replacement of bonnet bolts, - (3) Tightening of packing gland nuts, and - (4) Injection of lubricant into lubricated packing. - (h) Any valve that is designated, as described in §63.181(b)(7)(i) of this subpart, as an unsafe-to-monitor valve is exempt from the requirements of paragraphs (b) through (f) of this section if: - (1) The owner or operator of the valve determines that the valve is unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraphs (b) through (d) of this section; and - (2) The owner or operator of the valve has a written plan that requires monitoring of the valve as frequently as practicable during safe-to-monitor times, but not more frequently than the periodic monitoring schedule otherwise applicable. - (i) Any valve that is designated, as described in §63.181(b)(7)(ii) of this subpart, as a difficult-to-monitor valve is exempt from the requirements of paragraphs (b) through (d) of this section if: - (1) The owner or operator of the valve determines that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters above a support surface or it is not accessible at anytime in a safe manner; - (2) The process unit within which the valve is located is an existing source or the owner or operator designates less than 3 percent of the total number of valves in a new source as difficult-tomonitor; and - (3) The owner or operator of the valve follows a written plan that requires monitoring of the valve at least once per calendar year. #### **Environmental Protection Agency** (j) Any equipment located at a plant site with fewer than 250 valves in organic HAP service is exempt from the requirements for monthly monitoring and a quality improvement program specified in paragraph (d)(1) of this section. Instead, the owner or operator shall monitor each valve in organic HAP service for leaks once each quarter, or comply with paragraph (d)(3) or (d)(4) of this section except as provided in paragraphs (h) and (i) of this section. [59 FR 19568, Apr. 22, 1994, as amended at 59 FR 48176, Sept. 20, 1994; 61 FR 31440, June 20, 1996; 62 FR 2790, Jan. 17, 1997] # § 63.169 Standards: Pumps, valves, connectors, and agitators in heavy liquid service; instrumentation systems; and pressure relief devices in liquid service. - (a) Pumps, valves, connectors, and agitators in heavy liquid service, pressure relief devices in light liquid or heavy liquid service, and instrumentation systems shall be monitored within 5 calendar days by the method specified in §63.180(b) of this subpart if evidence of a potential leak to the atmosphere is found by visual, audible, olfactory, or any other detection method. If such a potential leak is repaired as required in paragraphs (c) and (d) of this section, it is not necessary to monitor the system for leaks by the method specified in §63.180(b) of this subpart. - (b) If an instrument reading of 10,000 parts per million or greater for agitators, 5,000 parts per million or greater for pumps handling polymerizing monomers, 2,000 parts per million or greater for all other pumps (including pumps in food/medical service), or 500 parts per million or greater for valves, connectors, instrumentation systems, and pressure relief devices is measured, a leak is detected. - (c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §63.171 of this subpart. - (2) The first attempt at repair shall be made no later than 5 calendar days after each leak is detected. - (3) For equipment identified in paragraph (a) of this section that is not monitored by the method specified in §63.180(b), repaired shall mean that the visual, audible, olfactory, or other indications of a leak to the atmosphere have been eliminated; that no bubbles are observed at potential leak sites during a leak check using soap solution; or that the system will hold a test pressure. (d) First attempts at repair include, but are not limited to, the practices described under §§ 63.163(c)(2) and 63.168(g) of this subpart, for pumps and valves, respectively. [59 FR 19568, Apr. 22, 1994, as amended at 59 FR 48177, Sept. 20, 1994; 60 FR 18029, Apr. 10, 1995; 62 FR 2790, Jan. 17, 1997; 65 FR 78285, Dec. 14, 2000] ### § 63.170 Standards: Surge control vessels and bottoms receivers. Each surge control vessel or bottoms receiver that is not routed back to the process and that meets the conditions specified in table 2 or table 3 of this subpart shall be equipped with a closed-vent system that routes the organic vapors vented from the surge control vessel or bottoms receiver back to the process or to a control device that complies with the requirements in §63.172 of this subpart, except as provided in §63.162(b) of this subpart, or comply with the requirements of §63.119(b) or (c) of subpart G of this part. [60 FR 18024, Apr. 10, 1995] #### §63.171 Standards: Delay of repair. - (a) Delay of repair of equipment for which leaks have been detected is allowed if repair within 15 days is technically infeasible without a process unit shutdown. Repair of this equipment shall occur by the end of the next process unit shutdown. - (b) Delay of repair of equipment for which leaks have been detected is allowed for equipment that is isolated from the process and that does not remain in organic HAP service. - (c) Delay of repair for valves, connectors, and agitators is also allowed if: - (1) The owner or operator determines that emissions of purged material resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair, and - (2) When repair procedures are effected, the purged material is collected